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INTRODUCTION

The use of precision oncology in the treatment of 
human tumors has become the next big thing in 
therapeutic approaches. The concept is straightforward 
yet compelling: to identify the genotypes and 
phenotypes of cancer in order to personalize treatment 
and risk assessment for each patient. In order to 
do this, techniques for next-generation sequencing 
(NGS) have been created to describe the genomes of 
tumors. Although this method has been successful in 
linking genotypes to appropriate medicines, testing is 
limited by the availability of tumor tissue. Therefore, 
considering that radiological scans, such as computed 
tomography and magnetic resonance imaging (MRI), are 
frequently conducted for cancer diagnosis, assessment 
of treatment response, and other purposes, research 
has looked into employing imaging as a data source for 
deeper phenotyping.surveillance for diseases. Thus, 
the field of study known as “radiomics” deals with the 
quantitative properties of pictures—such as forms, 
grayscale textures, and intensities—that are not visible 
to the human eye when extracted from designated 
regions of interest (ROI) on radiological images.

Tools from radioomics for clinical classification and cancer 
diagnosis
Numerous investigations have proven the potential of radiomics 
in diagnosis and clinical phenotypic stratification for treatment 
intensification or de-intensification over the years [1]. These 
published radiomics models claim to be able to forecast cancer 
patients’ responses to particular drugs and/or predict their 
prognosis [2, 3]. However, due in part to low model reliability, 
radiomics deployment in the clinic is still difficult. In order to 
standardize the radiomics workflow, the Image Biomarker 
Standardization Initiative (IBSI) was established [4]. The 
radiomics quality score (RQS) was developed independently to 
help physicians assess the caliber of radiomics research [5].

We evaluate the work of Liu and colleagues [6] in light of this, 
as they created a radiomics signature to forecast post-radiation 
nasopharyngeal necrosis (PRNN) in patients suffering from 
locoregionally recurrent nasopharyngeal carcinoma (lrNPC). 
Pre-treatment MRI scans (T1-weighted with and without 
contrast enhancement, as well as T2-weighted sequences) of 
761 patients—420 for training and 341 for validation—enrolled 
from four hospitals were used by the researchers to create the 
model. They created a 6-feature signature using a random forest 
model, which included 2 shape features, 3 texture features, and 
1 first-order statistic that could distinguish between patients 
who were at low and high risk for PRNN. In the training dataset, 
the signature obtained AUCs of 0.722; for the internal and 
external validation cohorts, it obtained AUCs of 0.713 and 0.756, 
respectively. The affix exceeded the performance of established 
prognostic clinical factors, such as age, sex, disease-free interval, 
gross tumor volume, and re-irradiation dosage [7]. It was also 
generalized to other imaging parameters, centers, and patient 
subgroups (e.g., rT-categories, varying ages). The AUCs ranged 
from 0.888 to 0.671. The researchers compared the somatic 
transcriptome profiles of 29 patients with the radiomics features 
in order to give the model explanatory power. They linked the 
six radiomics traits to the signaling pathways for vascularity and 
fibrosis based on gene set enrichment studies.

Advantages and drawbacks
Overall, this study has a number of advantages. First, for lrNPC 
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patients whom reirradiation is anticipated, PRNN is a 
significant and clinically relevant consequence; soft tissue 
necrosis after reirradiation is a common and possibly 
crippling toxicity for these patients [8]. Therefore, from 
a clinical standpoint, it is beneficial to have a tool that can 
help with patient selection. Second, the study’s investigators 
demonstrated the validity of their radiomics model through a 
series of thorough validation stages, including demonstrating 
the model’s generalizability across various illness states and 
institutions.
Having said that, are we planning to use this radiomics 
instrument in the clinic starting tomorrow? There are a few 
noteworthy restrictions that should be mentioned. First, 
the AUCs for prediction are, at most, moderate at ~0.7. 
Secondly, it is unclear if the transcriptome profiling samples 
were spatially associated with the ROI where the radiometric 
features were taken out. When interpreting the robustness 
of the radio- transcriptionmic studies, this is an important 
factor to take into account. Third, there are significant 
obstacles to evaluating model reproducibility, including 
the absence of thorough documentation, the availability of 
open-source codes, and data accessibility.
Radiomics instrument translation from research to clinical 
practice What drastic measures are ultimately required to 
move radiomics tools from the laboratory to the clinical 
setting?
(1) Standardizing the radiomics workflow: An important first 
step is to harmonize the various processes, from image 
acquisition to model validation. The IBSI working group 
has developed a set of principles for benchmarking future 
radiomics studies in order to encourage adherence [4].
(2) ROI segmentation automation: This stage is crucial 
because radiomics feature extraction is delicately sensitive 
to minute changes in segmentation floods [9].
(3) Ensuring data quality: Given that tflese parameters can 
skew model performance, we propose the need for bencfl- 
marking criteria to assess the quality of datasets related to 
the accuracy of clinical annotation and the extent of data 
missingness for external validation of radiomics models.
(4) Transparency of study outcomes and validation: 
Independent groups conducting validation studies within 
a certain window time should be encouraged, rather than 
depending exclusively on the investigators. Regardless of 
the study’s conclusions (positive or negative validation), the 
findings should be publicly disclosed, and journals should 
contribute to the publication of the results. Detailed reports, 
source codes, and anonymized data from the initial study 
must be made available in order to satisfy tflis.

(5) Explainability of the TFL radiomics model: We hypothesize 
that it would be optimal for radiomics models to incorporate 
the biological and clinical relationships that serve as the 
foundation for TFL development. By spatially connecting 
treatment response with target ROI or molecular profiles with 
treatment radiomics indices, this could be mitigated [10].
(6) Radiomics characteristics with spatial resolution: 
Differential treatment responses may be exhibited by distinct 
locations within a ROI. In light of this, exploring spatial-level 
radiomics may enhance its explanability when compared 
to bulk-level radiomics and is an intriguing avenue for the 
science to pursue.

CONCLUSION

Although research on radiomics’ potential in precision 
oncology keeps coming out, the oncology community is 
still unclear about its relevance. In the future, the emphasis 
should shift from presenting yet another “hyped” radiomics 
model to demonstrating the scientific validity of the model for 
clinical application. In order to do this, it would be necessary 
to implement some of our suggested policies and ultimately 
test these models in prospective clinical trials guided by 
radiomics. Then and only then will radiomics live up to its 

potential as a precision oncology “ludum mutante.”
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